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ABSTRACT: The concept of interfacial layers surrounding
inclusions in a host polymer is accepted as a basic source of
the scale factor in the simulation of the large-strain defor-
mation and fracture of polymer blends and composites. The
essence of the phenomenon is the ductile-brittle transition if
the polymer ligament thickness exceeds a critical value,
which is determined by the nature of the polymer. Original
texture-sensitive constitutive equations have been applied
for the simulation of the polymer large-strain deformation.
Two periodic structural models of composites have been
used. The disperse component (elastomeric or rigid inclu-
sion) has been replaced by a geometrically identical system
of pores, which coincides with phenomena of elastomeric

inclusion rupture in rubber-toughened plastics and debond-
ing in particulate-filled composites. The local loss of stability
of an elastic deformation is used as a composite fracture
criterion. The specific properties of the interphase can be
caused by a specific texture and by closeness to a free
surface. This specificity is stated in the model by an im-
proved plastic ability compared with that of a bulk polymer.
Our simulations show that the percolation of an interfacial
polymer provides the brittle-ductile transition. © 2003 Wiley
Periodicals, Inc. ] Appl Polym Sci 89: 2771-2777, 2003
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INTRODUCTION

Any kind of constitutive relations for continuum me-
dium mechanics, which link strain (¢) and stress (o)
tensors, are invariant with respect to Cartesian coor-
dinate (x) scale transformation: x — Ax. This argument
supports the conclusion that both macroscopic and
microscopic mechanical behaviors of heterogeneous
materials should not be dependent on the characteris-
tic scale of the structure. In particular, it is natural to
expect that a change in the particle size with the
conservation of the volume fraction will not cause any
noticeable mechanical response of a polymer blend or
composite.

Nevertheless, it has undoubtedly been established
that the inclusion diameter drastically affects the frac-
ture parameters of polymer blends or composites. It
has been found'™ that the brittle-ductile transition
occurs not only with an increase in the rubber fraction
but also with a decrease in the inclusion size in rubber-
toughened plastics.

The ductile-brittle transition also holds for a partic-
ulate-filled polymer.*”” The quantitative parameters
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of the phenomenon, particularly the transition filler
fraction (®,,), are strongly influenced by the particle
size. The scale dependencies of particulate-filled-poly-
mer fracture parameters [e.g., the fracture toughness
(F,) and elongation to break (g;)] are more complicated
than those of rubber-toughened plastics. That is, they
are bell—shaped."’ Therefore, an increase in the particle
size (d) leads to a brittle-ductile transition at small 4 (4
< dpnay)™® and to a ductile-brittle transition at large d
(d >d,.,).>”" It has been shown that the first transition
is mostly caused by a drop in the debonding stress
(04), which provides, in turn, a decrease in the yield
stress (0,). That is why an increasing branch of e,-d
dependence is qualified as an adhesive factor of rup-
ture. In the case of sufficiently large inclusions (4
> d.x), debonding occurs mostly at the early stages
of deformation. Therefore, the system becomes me-
chanically equivalent to porous media, as it is for
rubber-modified polymers, especially in the case of
cavitated inclusions. The decreasing character of the
&,~d dependence is qualified® as a geometrical factor
of rupture. This phenomenon of a general meaning is
the subject of this simulation.

The deformation and fracture of porous media are
simulated. Pores are supposed to be formed by either
cavitation or debonding of the inclusion. The history
of the pore formation is not a subject of this study.
Therefore, the approach proposed is general in this
sense and can be applied to a wide class of materials,
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such as rubber-toughened plastics and particulate
composites. In every case, pores in the model replace
inclusions. The key idea of the simulation is the as-
sumption concerning the formation of an interfacial
layer of an increased plastic ability (cf. a bulk poly-
mer). The thickness of a high-plastic layer is assumed
to be dependent on the polymer nature, temperature,
strain rate, and other conditions, but it is assumed to
be independent of the particle content and size. Such
invariance is the source of a simulated scale factor.

The special morphology of the interphase is not
directly explained in this article. Readers are referred
to publications®”~® in which the interfacial layer con-
cept is suggested and experimentally grounded for
semicrystalline polymers such as high-density poly-
ethylene®” and polyamide 6.%” It has been shown that
in contrast to a spherulitic structure of a bulk polymer,
the interphase is characterized by crystalline lamellae
perpendicular to the inclusion boundary. The perco-
lation of an interfacial polymer provides (accordingly
to the authors’ hypothesis) the brittle-ductile transi-
tion.

Recently, deformation of such a three-phase com-
posite was simulated by Tzika et al.'” The details of
the texture were taken into account. Two different
large-strain constitutive relations were used: a glassy
polymer model'"'* for the bulk matrix and a con-
strained hybrid model>™'® for the crystalline inter-
phase. The differences in the macroscopic diagrams,
shear band nucleation, growth, and volumetric effects
for the cases of thick, thin, and intermediate polymer
ligaments were carefully elucidated and analyzed.

Nevertheless, the contribution of Tzika et al.'° to the
problem of the mechanisms of the scale effect on com-
posite deformation and fracture still requires further
development. First, no fracture criterion was intro-
duced and applied to elucidate the ductile or brittle
mode of the composite failure. Extended plastic flow
seems to be a good indication of increased toughness.
However, a direct simulation of composite failure is
obviously desirable even if it is based on a simplified
fracture criterion. Second, the critical ligament thick-
ness criterion for the ductile-brittle transition is valid
not only for semicrystalline polymers but also for
glassy polymers,> which cannot be characterized by
the special morphology of the interfacial layer. We
believe that closeness to a free surface can be the
reason for improved plasticity without serious mor-
phological transformation. That is why it is sensible to
also apply equations allowing the direct variation of
the plastic ability. Third, the validity of a critical liga-
ment thickness criterion should be confirmed inde-
pendently of the constitutive model applied. There-
fore, it is sensible to use various relations for the
polymer finite deformation to simulate the phenome-
non. Such a simulation is performed in this study on
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the basis of the original texture-sensitive constitutive
model,'”'® which is briefly defined later.

The problem discussed is very important for appli-
cations. Particulate-filled composites are widely used
but unfortunately are mostly characterized by low
fracture parameters. Simulations show certain ways of
improving the toughness: a decrease in the inclusion
size, the spatial arrangement of particles (to avoid
aggregation), and filler and surface modification (to
facilitate pore formation by debonding or cavitation).

The article is organized as follows. Constitutive
equations for homogeneous polymers, structural as-
sumptions for composites, accepted fracture criteria,
and numerical algorithms are described in the next
section. The micromechanical aspects of deformation,
A, dependencies on the particle content and size, and
regularities of the simulated ductilebrittle transitions
are represented and discussed in the subsequent sec-
tion. The main conclusions are summarized in the
final section.

DEFINITIONS AND ASSUMPTIONS
OF THE MODEL

Constitutive equations for polymer large-strain
deformation

The recently proposed'”'® texture-sensitive constitu-
tive model for homogeneous polymer large deforma-
tion and ductile fracture is used for the targets of our
simulations. The basic points of the model are listed
next.

The polymer texture is characterized by a distribu-
tion in the polymer fragment orientation:

f(p)dp (1)

This determines a portion of the polymer fragments at
a given point (x) of the space oriented in the infinites-
imal area (dp) of a unit sphere around a given direc-
tion (p). The term polymer fragment is supplied by a
flexible physical sense dependent on a polymer and on
the conditions and stage of deformation. In particular,
the term can refer to a polymer crystal or to a segment
of a polymer chain. Moreover, several kinds of poly-
mer fragments of different physical meanings can be
introduced. A bifragmental model was applied'® for
the simulation of the large-strain deformation of a
semicrystalline polymer.

The kinematics are described in the framework of
the multiplicative law for deformation gradients:

F=_=F°F, (2)

where F, and F, are elastic (reversible) and plastic

(irreversible) multipliers, respectively. Equation (2) in-
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dicates the local representation of the mapping of the
reference coordinates (X) to the current coordinates (x)
as a complex mapping with an intermediate irrevers-
ible state (X,,):

X, dx
X = X(X) = X[X},(X)], Fp = 871 Fe = (97 (3)

P

The symmetric representation of the elastic deforma-
tion gradient [(F,)" = F,] and the logarithmic defini-
tion of the elastic strain tensor

e =logF, (4)

are used.

Elastic constitutive equations for the polymer of the
structure described by the orientational distribution
[f(p)] are determined in terms of the elastic potential

u,)

u, = C%sijskl 5)

1
2

in current spatial variables (x).

The elasticity tensor (Cgfk)l) for perfectly oriented
fragments is supposed to be anisotropic. In particular,
the crystal modulus in the chain direction can be sev-
eral orders of magnitude greater than that in the trans-
verse direction. The tensor CEJQ is defined in the model

by the rule of mixture:

Cfﬁd = (Ciu(PDsp = J Ci(p)f(p)dp (6)

This corresponds to the assumption of strain unifor-
mity with respect to fragments that are differently
oriented but similarly posed in the space.

The kinetics of plastic flow, that is, the transforma-
tion rate of the plastic deformation gradient (F,), is
multiplicatively defined in the model:

F,(H) = FY(ADF,(t — Af) 7)

The explicit definition of an additional plastic defor-
mation gradient [F’;,(At)] is given in refs. 17 and 18. In
fact, it can be represented as a functional dependence
(A,) of the plastic strain rate (¢,) on the shear stress (7)
and orientational distribution (f):

&, = kA, (7, f) (3)

Equation (8) corresponds to a slip mechanism of plas-
tic flow in the polymer fragment orientation. There-
fore, the polymer fragments oriented in the direction
of the elastic tension contribute nothing to &,. On the
contrary, polymer fragments contribute the maximum
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to &, if their slope to the tension direction is 45°. The
general plastic ability of a polymer is governed by a
model parameter (k).

The evolution of the structure, that is, the kinetics of
transformation of the orientational distribution, is
closely coupled to irreversible deformations. We also
refer to refs. 17 and 18 for explicit definition. Similarly
to eq. (8), the operator A,, determines the orientational
rate (f) for a given stress o and value of f:

f=koAo(o, ) (9)

Equation (9) follows the elastic transformation rule for
every given orientation p. For instance, uniaxial draw-
ing provides the preferable orientation of the frag-
ments in the drawing direction, and fragments ori-
ented in the tension direction do not exhibit reorien-
tation. The orientational rate in eq. (9) is governed by
a model parameter (k,).

The fracture criterion is determined as a condition
of the local instability of the elastic part of deforma-
tion. It is worthwhile to note that the large-strain
uniform deformation of solids is mostly unstable. The
formation of a shear band, craze, and neck is typical of
strain localization. However, such instabilities are not
considered sources of fracture if they are caused by
localization of the plastic flow, whenever elastic de-
formation remains stable. The stability loss of elastic
deformation causes a divergence in the numerical
scheme. This coupling is explored as an indicator of
fracture in simulations.

Of course, the criterion used is local. It simulates
only nucleation, not the propagation of the defect.
Therefore, its application is not completely sufficient
for the global analysis of the material’s failure. This
insufficiency is a general problem of fracture mechan-
ics. Nevertheless, local criteria are widely accepted
and successfully used in numerous studies,'® ! espe-
cially if a comparable analysis of the ultimate charac-
teristics is a target of simulation, which is the case of
this work. In particular, a corresponding approach
was recently applied by us to a comparison of F, of
particulate-filled composites with high and low adhe-
sive strengths.'®*?

In fact, the criterion of the loss of stability of elastic
deformation can be reformulated as a widely used
stress criterion of fracture. However, the critical
stress—strain state (SSS) strongly depends on the ma-
terial’s texture. It seems to be natural to define this
dependence with stability loss conditions, as done in
this study.

Structural model

The assumptions concerning the composite structure
are similar to those accepted in ref. 18 for binary
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Figure 1 Periodic two-dimensional structural models for
(a,b) the composite and (c,d) the corresponding periodicity
cells. The inclusions, bulk polymer, and high-plastic interfa-
cial layers are depicted by black, white, and gray, respec-
tively. (a,c) Nonpercolated and (b,d) percolated high-plastic
regions are shown.

composites (the composite sphere model of Hashin®?
was used in an alternative simulation;'? it is important
to note that the results obtained are very close to those
of ref. 18). Two-dimensional boundary value problems
are considered. Inclusions of identical shape and size
(dark regions in Fig. 1) are supposed to be periodically
distributed in the polymer matrix (white and light
regions in Fig. 1).

Every inclusion is surrounded by a high-plastic
polymer layer (light regions in Fig. 1) of a fixed thick-
ness (1), which is assumed to be a material parameter
independent of the particle fraction (®) and size (d).
The percolation of high-plastic regions occurs if a cer-
tain relation between h, ®, and d holds true. Obvi-
ously, the relation depends on the shape and disposi-
tion of the inclusions. In particular, in the case of the
square disposition of a circular inclusion (Fig. 1), the
percolation threshold is defined as follows:

d* = a®(d + 2h)* (10)

where « is equal to 4/m. The circular shape of the
inclusions is less convenient than the square one for
further numerical simulations. That is why the square
shape of the inclusions has been chosen. Square [Fig.
2(a,c)] and chesslike [Fig. 2(b,d)] dispositions of their
centers have been considered. Percolation thresholds
for square and chesslike structural models are also
defined by eq. (10) with & = 1 and « = 2, respectively.
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Boundary value problem and numerical scheme for
its solution

Mathematical techniques for the statement and solu-
tion of the boundary value problem, which describes
the large-strain deformation of either binary or mul-
tiphase composites of periodic and composite sphere
structures, are defined in refs. 18 and 22, respectively.
Therefore, it is sensible not to overload readers with
cumbersome details, so we only briefly list the main
points of the approach related to a periodic structural
model.

Homogenization theory (see refs. 24 and 25) reduces
a macromechanical description of a periodically ho-
mogeneous medium [Fig. 1(a,b)] to the solution of the
boundary value problem for a representative period-
icity cell [Fig. 1(c,d)]. Mirror symmetry, both of the
structure and macroscopic load, which are supposed
to be true, provides the possibility of an additional
diminution of the integration domain to the quarter of
a periodicity cell (Fig. 2) and of a replacement of
periodic boundary conditions by conventional ones:

8xj —0
0X, o

1 Xi=0

xi|X,~=O =0, xi|X,:L = )A\i(t)L/ ] # 1
(11)

with given axial values A)A\Z-(t) of a macroscopic defor-
mation gradient Fy(f) =A,(t)5;.

fa) (b)

h

X
i

Figure 2 Quarters of periodicity cells corresponded to (a,c)
quadric and (b,d) chesslike structural models. The indica-
tions of the components and the percolation of the high-
plastic regions are the same as those given in Figure 1.
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x (i)

x3(7)

Figure 3 Sketch of the FE system for the quarter of the
periodicity cell.

An original version of the finite element (FE)
method'®*? is applied to the numerical solution of the
boundary value problem [eq. (11)]. The system of
triangular FEs is depicted in Figure 3. The deforma-
tion of every triangle is interpolated by a uniform SSS
based on the node positions (x;). Therefore, the current
configuration of the nodes is sufficient for an approx-
imate definition of the SSS in a composite.

The solution of the elastic problem is the most cum-
bersome part of the algorithm. The FE interpolation of
the mapping x(X) leads to the approximation of the
total elastic energy (U,) of the node position:

u,= f f U,(t, x)dx = f f U,[t, x(X)]g—;dX
(1) QO

[

=U,=2 Uls (12)
k

The energy density [eq. (5)] is determined by the ki-
nematical decomposition [eq. (2)] and the strain and
elasticity tensors [egs. (4) and (6)]. ) and w(t) are used
for the initial and current configurations of the quarter
of the periodicity cell (Fig. 3). U® and s® are the
elastic energy and area of the kth FE, respectively.
The minimization of U, [eq. (12)] by a proper choice
of the node position [x,(t)], with boundary conditions
[eq. (11)] taken into account, is a way of solving the
elastic problem. The iteration procedure, (s) = (s + 1),
has been elaborated for this purpose. It is based on a
second power approximation of the function U,:

ol,
o [ [x* D = xf]

U~ U, =09+
L

U
+ e (s) (s+1) _ .(5) (s+1) _ 4.(8)
2 g MY =Pl = o] (13)

i,j
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This reduces the minimization problem at every iter-
ation step, (s) — (s + 1), to the linear system of
algebraic equations:

ol,
W =0 (14)
Then, plastic deformation gradients [F;,k)t] and orien-
tational distributions [f(k)(t)] for each of the kth FEs are
calculated with the kinetics of plastic flow and the
laws of the structural evolution (see the previous sub-
sections).

RESULTS AND DISCUSSION
Parameters of the model and loading conditions

The macroscopic loading conditions of uniaxial draw-
ing with a fixed drawing rate (¢= 0.1) have been stated
in every computer experiment.

The elastic properties of both bulk and interfacial
polymers with perfectly oriented fragments are char-
acterized by the following values in dimensionless
units: E, = 2.5 (axial Young’s modulus in the direction
of orientation), E, = 0.025 (Young’s modulus in the
transverse direction), v,, = 0.2 (Poisson ratio of trans-
verse compression caused by axial tension), and w
= 0.02 (shear modulus).

The value of k,, which is responsible for the rate of
structural evolution, also does not differ for the two
polymers in the simulations and is equal to 0.5. The
parameter k,, which governs by the plastic ability, has
been verified from 1.5 for bulk polymers to 2.5 for
interfacial polymers. Such a difference results in a
diminution of o, from 0.55 to 0.35 and in an increase of
Ay, from 1.76 to 6.2 (Fig. 4).

0.06 15,
0.05
0.04 -
0.03 4
0.02 1 2

0.01 4 3

0 T T T T T T 1
0 1

N
(¥S)
~
w
o
~

Figure 4 Drawing diagrams for a composite of a quadric
structure calculated (1) for a low-plastic matrix, (3) for a
high-plastic matrix, and (2) for a ratio of 0.2 of the thickness
of the high-plastic interfacial layer to the linear size of () of
the periodicity cell (Fig. 3). The diagrams correspond to ®
= 25%.
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Figure 5 Large-strain deformation of the mesh correspond-
ing to a porous high-plastic polymer with a chesslike struc-
ture. The filler fraction, ® = 21.16%, is close to 25%, the
maximum for a given structural model.

Deformation features

The model predicts an essential difference in the com-
posite plastic ability caused by a variation of the rel-
ative thickness of a high-plastic layer (Fig. 4). In par-
ticular, o, decreases from 0.55 to 0.35. The A value rises
from 1.76 to 6.2 (the fracture criterion in the simula-
tions consists of a loss of elastic stability).

Therefore, the high-plastic ability of the polymer
matrix, particularly in the presence of a well-devel-
oped cluster formed of a high-plastic polymer, pro-
vides the same for a composite if cavitation on inclu-
sions occurs during the early stages of deformation.
The large-strain deformation of the mesh in a porous
high-plastic polymer of a chesslike structure is shown
in Figure 5. The value of the analyzed filler fraction, ®
= 21.16%, is close to 25%, which is near the maximum
packing for the structural model. Therefore, the dis-
tance between neighboring inclusions (pores) is very
small. Nevertheless, the possibility of large-strain de-
formation is still possible. The second interesting fea-
ture is seen in the deformation image in Figure 5. The
corner points of the boundary (vertices of square in-
clusions) do not drastically restrict the composite plas-
tic ability and undergo a considerable smoothening in
the process of large-strain deformation.

Fracture features

The A, values of composites under the assumption of
interfacial high-plastic layer formation are examined
and discussed in this section. Two structural models,
quadric and chesslike, are analyzed. Both suggest the
periodic disposition of identical square inclusions.
Their centers are supposed to be suited to the sites of
a square lattice [Fig. 2(a,c)] for the first and a chesslike
order for the second.

Ay, versus the ratio of the inclusion (pore) size to the
thickness of the interfacial layer of a high-plastic poly-
mer at various values of ® are shown in Figure 6. The
model predicts ductile-brittle transitions for both of
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the chosen structural models. This transition is
sharper for the quadric structural model.

The laws of the transition qualitatively coincide
with that experimentally observed for rubber-tough-
ened plastics'™ and particulate-filled composites.*™
In particular, an increase in the inclusion (pore) frac-
tion shifts the transitional inclusion size to lower val-
ues. However, the modeling of a large-strain deforma-
tion in frameworks of different structural assumptions
shows that one should be careful in the direct appli-
cation of a critical ligament thickness criterion for the
description of the transitional point. The relative size
values, which correspond to a percolation of a high-
plastic polymer [eq. (10)], are depicted in Figure 6 by
dotted vertical lines. The transitional size is very well
described by the percolation condition [Fig. 6(a)].
However, the corresponding values are essentially
lower than the values calculated with eq. (8) for a
chesslike structural model. The difference is primarily
caused by a remarkable nonuniformity of percolated
interfacial layers in their thickness in the case of a
chesslike structure [light regions in Fig. 2(d)]. On the
contrary, the interfacial layers are perfectly uniform in
thickness for a quadric structure [Fig. 2(c)]. Therefore,
a more perfect cluster of the high-plastic region is
necessary for high-plastic properties of a composite
than what is formed just below a percolation point in
the case of a chesslike structure. The assumptions of
the quadric model provide a perfect connection be-
tween the interfacial layers at the moment of percola-
tion.

dih

Figure 6 Ultimate elongation (\,,) versus the relative in-
clusion size (ratio of the inclusion size to the thickness of the
interfacial layer, or d/h), calculated at (a) ® = (1) 10, (2) 25,
and (3) 50% for composites of a quadric structure and (b) ®
= (1) 4, (2) 10, and (3) 25% for composites of a chesslike
structure. The percolation thresholds for corresponding
structures [eq. (8)] are depicted by dotted lines.
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CONCLUSIONS

1. A novel model of the large-strain deformation
and fracture of polymer blends and composites
has been elaborated on the basis of the original
texture-sensitive  constitutive relations for
monophase polymer solids.

2. It is suggested in simulations that the cavitation
of inclusions occurs during the early stages of
deformation. Therefore, the modeling of the
large-strain deformation is performed under the
replacement of the inclusions by pores of identi-
cal shape and size.

3. The special properties of the interfacial polymer
layer, particularly its increased plastic ability, are
assumed. It is thought that the thickness of the
interfacial layer is determined by the polymer
nature and the conditions of the composite prep-
aration and testing, but it is independent of the
inclusion content and size.

4. Two structural models have been used for the
comparative analysis. The quadric position of
square inclusions is first. It provides perfect uni-
formity of interfacial layers in thickness just after
their percolation. The second model suggests
chesslike positions of square inclusions, and a
poor connection of interfacial layers occurs at the
percolation point.

5. The interfacial layer concept greatly assists in the
quantitative study of deformation and fracture.
The deformation diagrams and micromechanical
aspects of deformation have been analyzed. The
transition from ductility to brittle fracture has
been simulated and discussed. The results qual-
itatively coincide with the experimentally ob-
served laws for two types of polymer systems:
rubber-toughened polymers and particulate-
filled composites (law of adhesion). The validity
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of the critical ligament system criterion has been
discussed.
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